```
IEC SYSTEM FOR MUTUAL RECOGNITION OF TEST CERTIFICATES FOR ELECTRICAL EQUIPMENT (IECEE) CB SCHEME
```


CB TEST CERTIFICATE

Product

Name and address of the applicant

Name and address of the manufacturer

Name and address of the factory

Note: When more than one factory, please report on page 2
Ratings and principal characteristics

Trademark (if any)

Customer's Testing Facility (CTF) Stage used

Model / Type Ref.

Additional information (if necessary may also be reported on page 2)

A sample of the product was tested and found to be in conformity with

As shown in the Test Report Ref. No. which forms part of this Certificate

Switching power supply for building-in

ARCH Electronics Corp.

3F., No. 79, Sec. 1, Hsin Tai Wu Rd. Sijhih City, Taipei County TW-221, Taiwan

ARCH Electronics Corp.
3F., No. 79, Sec. 1, Hsin Tai Wu Rd.
Sijhih City, Taipei County TW-221, Taiwan
ARCH Electronics Corp.
3F., No. 79, Sec. 1, Hsin Tai Wu Rd.
Sijhih City, Taipei County TW-221, Taiwan
\square Additional Information on page 2
See page 2.

ARCH
 ELECTRONICS CORP.

1
MQF500E-xS, MQF5000-xS, MQF500U-xS
where " x " can be $9 \sim 12,48 ; 18 \sim 24,96 ; 36 \sim 49,92$

This CB test certificate substitutes previously issued CB test certificate No. SI-6073, dated 2017-08-09, due to update of test report.
\boxtimes Additional Information on page 2
IEC 60950-1:2005 (2 ${ }^{\text {nd }} E d$.) $+A 1: 2009+A 2: 2013$

T223-0456/17, dated 2017-09-29

This CB Test Certificate is issued by the National Certification Body

SIQ Ljubljana, Tržaška cesta 2, SI-1000 Ljubljana, Slovenia T +386 14778 100, F +386 14778 444, info@siq.si, www.siq.si
SIQ Ljubljana is accredited by Slovenian Accreditation with accreditation number CP-001 in the field of certification of products, processes and services.

Ratings and principle characteristics:

Input:
100-240 Vac; $50-60 \mathrm{~Hz}$; 6,3 Amax
Output:
MQF500E-xS, MQF5000-xS, MQF500U-xS
where " x " can be $9 \sim 12,48$: $9 \sim 12,48 \mathrm{Vdc} ; 41,5 \mathrm{~A}$; Max. 500 W
where " x " can be $18 \sim 24,96$: $18 \sim 24,96 \mathrm{Vdc} ; 20,8 \mathrm{~A}$; Max. 500 W
where "x" can be $36 \sim 49,92: 36 \sim 49,92 \mathrm{Vdc} ; 10,41$ A; Max. 500 W

Additional information (if necessary)

